analysis
goniometric functions:
sin(a+b) = sin(a) * cos(b) + cos(a)*sin(b)
cos(a+b) = cos(a) * cos(b) - sin(a)*sin(b)
sin(a) + sin(b) = 2 * sin((a+b)/2) * cos((a-b)/2)
sin(x+y) + sin(x-y) = 2 * sin(x) * cos(y)
cos(a) + cos(b) = 2 * cos((a+b)/2) * cos((a-b)/2)
cos(x+y) + cos(x-y) = 2 * cos(x) * cos(y)
cos(a) - cos(b) = -2 * sin((a+b)/2) * sin((a-b)/2)
cos(x+y) - cos(x-y) = -2 * sin(x) * sin(y)
sin^2(a) = (1 - cos(2a))/2
cos^2(a) = (1 + cos(2a))/2
1+tan^2(a) = 1/cos^2(a)
tan(a+b) = ( tan(a) + tan(b) ) / (1 - tan(a)*tan(b))
taylorexpansions:
exp(x) = sum( x^i/i!, i=0..n-1 ) + O(x^n)
= 1 + x + x^2/2! + x^3/3! + ...
sin(x) = sum( (-1)^i*x^(2i+1)/(2i+1)!, i=0..n-1 ) + O(x^(2n+1))
= x - x^3/3! + x^5/5! - x^7/7! + ...
cos(x) = sum( (-1)^i*x^(2i)/(2i)!, i=0..n-1 ) + O(x^(2n))
= 1 - x^2/2! + x^4/4! - x^6/6! + ...
1/(1-x) = sum( x^i, i=0..n-1 ) + O(x^n)
= 1 + x + x^2 + x^3 + ...
ln(1+x) = -sum( (-x)^i/i, i=1..n-1 ) + O(x^n)
= x - x^2/2 + x^3/3 - x^4/4 + ...
arctan(x) = sum( (-1)^i*x^(2*i+1)/(2*i+1), i=0..n-1 ) + O(x^(2n+1))
= x - x^3/3 + x^5/5 - x^7/7 + ...
(1+x)^a = sum( binom(a,i)*x^i, i=0..n-1 ) + O(x^n)
= 1 + ax + a(a-1)*x^2/2! + a(a-1)(a-2)*x^3/3! + ...
binom(a,0) = 1
binom(a,k) = prod( a-i, i=0..k-1 ) / i !
1/(1-x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8
1/(1-i*x) = 1 + ix - x^2 -i*x^3 + x^4 + i*x^5 - x^6 -i*x^7 + x^8
x/(1+x^2) = x - x^3 + x^5 - x^7
1/(1+x^2) = 1 - x^2 + x^4 - x^6 + x^8
x/(1-x^2) = x + x^3 + x^5 + x^7
1/(1-x^2) = 1 + x^2 + x^4 + x^6 + x^8
1/(1-i*x) = (1+i*x)/(1+x)
ln(1+x) = x - x^2/2 + x^3/3 - x^4/4 + x^5/5 - x^6/6 ix^7/7 - x^8/8
ln(1+ix) = ix + x^2/2 -ix^3/3 - x^4/4 +ix^5/5 + x^6/6 +ix^7/7 + x^8/8
arctan(x) = x - x^3/3 + x^5/5 + x^7/7
ln(1+x^2)/2 = + x^2/2 - x^4/4 + x^6/6 + x^8/8
-ln(1-x) = x + x^2/2 + x^3/3 + x^4/4 + x^5/5 + x^6/6 + x^7/7 + x^8/8
-ln(1-ix) = ix - x^2/2 -ix^3/3 + x^4/4 +ix^5/5 - x^6/6 -ix^7/7 + x^8/8
-ln(1+x^2)/2 = - x^2/2 + x^4/4 - x^6/6 + x^8/8
arctan(x) = x - x^3/3 + x^5/5 - x^7/7
-ln(1-ix) = i*arctan(x) - ln(1+x^2)/2
(ln(1+ix) - ln(1-ix))/2 = i * arctan(x)
sinh(x) = x + x^3/3! + x^5/5! + x^7/7! + ...
cosh(x) = 1 + x^2/2! + x^4/4! + x^6/6! + ...
exp(x) = 1 + x + x^2/2! + x^3/3! + x^4/4! + x^5/5! + x^6/6! + x^7/7! + ...
exp(i*x) = 1 +ix - x^2/2! -ix^3/3! + x^4/4! +ix^5/5! - x^6/6! -ix^7/7! + ...
sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...
cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + ...
exp(i*x) = cos(x)+i*sin(x)
exp(x) = cosh(x) + sinh(x)
derivatives
c -> 0
x^n -> n*x^(n-1)
exp(x) -> exp(x)
ln(x) -> 1/x
sin(x) -> cos(x)
cos(x) -> -sin(x)
tan(x) -> 1/cos^2(x)
arcsin(x) -> 1/sqrt(1-x^2)
arccos(x) -> -1/sqrt(1-x^2)
arctan(x) -> 1/(1+x^2)
ln(x+sqrt(x^2+a^2)) -> 1/sqrt(x^2+a^2)
(a*f(x)+b*g(x))' = a*f'(x) + b*g'(x)
(f(x)*g(x))' = f'(x) * g(x) + f(x) * g'(x)
(f(x)/g(x))' = ( f'(x) * g(x) - f(x) * g'(x) ) / g^2(x)
f(g(x)) ' = f'(g(x))*g'(x)